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Abstract— Weather change has intensified extreme events,
increasing risks to agriculture, public health, and disaster
management. Conventional forecasting models face challenges
from exponential data growth, non-stationary weather patterns
(concept drift), and the need for real-time adaptability.
Incremental Learning (IL)—a class of algorithms that
continuously update models with streaming data without full
retraining—offers adaptive, scalable, and drift-resilient
forecasting capabilities. This study investigates the role of IL in
advancing weather forecasting, examining methodologies, real-
world applications, domain-specific challenges, and evaluation
strategies. It reviews techniques including online ensemble
models, continuous deep learning frameworks, and hybrid
adaptive systems capable of learning from evolving weather
data streams. The study discusses applications in temperature
and rainfall forecasting, as well as extreme weather event
detection. Key challenges include high spatiotemporal
variability and incomplete or noisy satellite observations. The
study concludes that IL is pivotal for next-generation adaptive
weather forecasting and supports timely, reliable decision-
making in dynamic weather conditions.
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I. INTRODUCTION

Weather forecasting plays a crucial role in agriculture,
health, and disaster management by providing essential
information that aids decision-making and risk mitigation.
Accurate weather predictions enable stakeholders to prepare
for adverse conditions, optimize resource use, and enhance
resilience against weather variability. Seasonal weather
forecasts help farmers tailor practices to anticipated weather,
reducing risks during adverse seasons and maximizing
benefits in favorable ones [1]. Forecasts provide information
and guidance for decisions about crop selection, pest
management, and resource use, improving productivity and
sustainability. Timely forecasts can result in increased
profitability and decreased losses for farmers, helping them
and their marketing systems deter the downward spiral of low
profitability and extinction of farming; as well as provide
some assurance for downstream users of farm outputs,
especially if they are reliant on the farm to provide stable
output [2]. About public health, weather forecasts can
sometimes identify conditions favorable for the spread of
disease to allow relevant interventions to occur quickly in
public health terms. In short, weather forecasts enhance food
security through stabilizing agricultural production for public
health [3]. The social relevance and value of accurate weather
forecasts is well illustrated when considering extreme weather
events, where forecasts can promote preparedness, regarding
the strategic allocation of resources and strategies for effective
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responses. Engaging with communities for advocacy and
understanding of weather forecast information can help
develop resilience in the context of damages from weather
disasters, as well as adaptive capacity for future weather
change impacts [4].

Traditional forecasting models are strained under big data,
concept drift, and real time adaptation. These issues arise due
to the nature of data streams. For example, within the smart
city environment, data streams and online data are generated
continuously in some instances. Rapid technology adoption of
the Internet of Things (IoT) and the subsequent data
generation, along with the sustained, consistent, and dramatic
increase of data development, have resulted in a high-volume
stream of data to be processed quickly. Traditional models are
further strained with data memory and processing time
constraints and can hinder real-time analyses of larger datasets

[5].

Concept drift refers to the changing statistical properties
of the data over time, usually resulting in declining model
performance. Many traditional models learn based on data that
is restricted to what the practitioners trained the model on.
Existing models only react to concept drift slowly or
inaccurately, producing unreliable, old predictions. Types of
model adaptation, such as proactive model adaptation and
drift detection, provide accurate modeling capabilities in
changing data distributions [6]. Real-time adaptability is
critical for good forecasting, especially with forecasting
within non-stationary environments. Data augmentations,
filtering, transfer learning strategies, or adaptive filtering
could improve models' robustness against concept drift and
allow practitioners to learn with data quicker over time [7].
However, to achieve this adaptability, sophisticated feature
selection and model adjustment techniques are required to
ensure performance is not compromised [8].

Despite these challenges, however, there are pathways
forward to create stronger forecasting models that can
implement new modelling techniques with a better chance of
adapting to dynamic scenarios and improving accuracy.

Incremental learning is an effective method for improving
weather change forecasting because it allows models to
gradually incorporate new data without the need to re-train.
Incremental learning can be particularly useful for
meteorological applications because the amount of data is not
a concern when modelling, but the timing of accurate
predictions is often crucial given the continuous training of the
models. It also reduces the computational cost incurred from
training models from scratch and is beneficial when space is a
constraint. For example, while the Channel-Adapted MoE
model optimizes its incremental updates by utilizing 15% of
the trainable parameters, it achieves similar performance as
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state-of-the-art models [9]. This is especially pertinent for
scenarios with time-sensitive decision making in the context
of weather change, such as flood forecasting requiring rapid
response, compared to others that may have weeks to act and
decision-to-collection times are not as critical. Incremental
learning allows for new data to be poured into the model as it
comes in based on a normal flow of incoming meteorological
data. Liu et al. propose a novel two-phase approach to
modeling that distinguishes newly minted short-term
meteorological data from non-actionable long-term data,
enhancing model performance through asynchronous updates.
Models' ability to develop accurate predictions when acting as
predictive models based on collected or observed data, will
depend on the consistency of available data and how adaptable
those models are as weather evolve [10].

Incremental learning strategies, including core-set
selection strategies, reduce the severity of issues like
catastrophic forgetting, allowing the model to access
previously learned information while incorporating new data
[11].

Il. INCREMENTAL LEARNING

Incremental learning is the ability to learn from streaming
data that arrives over time, while often working within limited
memory resources and not giving up model accuracy.
Incremental learning is most relevant to the context where the
environment is dynamic and the characteristics of the data
might be subject to change, and is constantly evolving.
Incremental learning can take various forms, including online
learning, continual learning, and lifelong learning, each with
its own challenges and applications

A. Types Of Incremental Learning

1) Task-Incremental Learning: This type of learning
allows the model to learn individual tasks sequentially in
order to maintain knowledge of prior tasks. This form of
learning imposes additional constraints as the model has to
inherently distinguish between tasks while also managing
task-specific information and instructions [12].

2) Domain-Incremental Learning: This form of learning
involves the model learning data that is in a different domain
but relevant to the same task. The challenge is to learn the
shifting domains while not forgetting prior learned data and
knowledge [12].

3) Class-Incremental Learning: This learning type is
about learning new classes of data while still maintaining
performance for previously learned classes. Class-
incremental learning can have applications in domain
adaptation. An example of a good example of class-
incremental learning is human activity recognition data,
where the types of activities will likely evolve over time as
new activities develop [13].

B. Key characteristics

1) Memory Constraints: Incremental learning approaches
are inherently memory-constrained, as they deal with data in
an efficient way [14].

2) Adaptability: It is also relevant if they are able to adapt
to changes in information and/or changes in new
environments. Adaptive capacity is paramount in the setting
of concept drift, where the underlying distribution of the data
moves over time [15].

3) Scalability: That is, they efficiently scale as data
volume increases, and offer continued performance without
having to retrain everything [16].

4) Concept Drift: Approaches to combat concept drift
include ensemble approaches or knowledge transfer
approaches [17].

I1l. WEATHER FORECASTING: PROBLEM TYPES AND DATA
CHALLENGES

Weather forecasting encompasses various problems,
including temperature prediction, rainfall forecasting, and the
prediction of extreme events like heat waves and floods. These
forecasting challenges are addressed through advanced
methodologies that integrate data-driven approaches with
traditional meteorological techniques, enhancing the accuracy
and reliability of predictions..

A. Temperature Prediction

Temperature forecasting employs Numerical Weather
Prediction (NWP) models and machine learning methods to
improve accuracy. Hybrid systems combine statistical
methods with dynamical models, allowing for better
integration of diverse data sources and reducing biases in
predictions [18], [19].

B. Rainfall Forecasting

Rainfall predictions are critical for hydrological
applications, particularly in flood forecasting and water
resource management. Short-range forecasts are essential for
immediate decision-making, while seasonal forecasts assist in
agricultural planning [19], [20].

C. Extreme Event Prediction

Early-warning systems leverage machine learning to
predict extreme weather conditions, enhancing the ability to
forecast heatwaves and floods. Advanced models like
FourCastNet and downscaling techniques provide high-
resolution forecasts, crucial for local impact assessments [21],
[22]. Table I shows different types of weather forecasting
problems.

Conversely, while advancements in forecasting techniques
have improved prediction accuracy, challenges remain,
particularly in addressing uncertainties inherent in weather
models and the need for real-time data assimilation to enhance
operational forecasting systems.

TABLE I. TYPES OF WEATHER FORECASTING PROBLEM
Problem L I
Type Description IL Application Example
Temperature tSQho:g—rt]er_Tergou(gL)gsd;:L)g Online ARIMA for real-
Prediction P 9 time heat risk alerts [23]
orecasts
Heatwave Forecasting  prolonged | Adaptive ensembles for
Prediction high-temperature events early warnings [24]
Flood Modellng river Streaming Bayesian
. discharge/coastal
Prediction - - networks [25]
inundation

D. Critical Data Challenges In Weather Forecasting: How
Incremental Learning Adapts

Weather forecasting models are fighting an uphill battle
against data that refuses to behave. As the planet warms, we're
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not just seeing gradual temperature increases - we're
witnessing fundamental shifts in weather patterns that break
the rules our models were trained on. Storm tracks are
migrating poleward, precipitation patterns are becoming more
erratic, and extreme events are intensifying in ways that defy
historical precedents [26]. This phenomenon, known as
concept drift, is particularly insidious because it happens
gradually - a model that predicted hurricane paths perfectly
last year might be dangerously inaccurate this season.
Incremental learning approaches like drift-aware online
ensembles in [27] offer a solution by continuously monitoring
prediction errors and adjusting model parameters in real-time,
much like how experienced forecasters instinctively notice
when their intuition needs updating based on recent weather
anomalies.

The data quality issues plaguing weather forecasting
would keep any scientist awake at night. In developing nations
where weather stations are sparse and maintenance is
challenging, it's not uncommon for 30-40% of sensor data to
be missing or corrupted during critical weather events [28].
Satellite data, while comprehensive, comes with its own
headaches - cloud cover can obscure key atmospheric
measurements, and retrieval algorithms sometimes introduce
artifacts that look like real climate signals. Incremental matrix
factorization techniques in [29] help overcome these
challenges by building robust representations that can
gracefully handle missing data points, similar to how veteran
meteorologists learn to mentally reconstruct incomplete
weather maps based on surrounding observations.

Perhaps the most humbling challenge comes from Earth's
breathtaking diversity of microclimates. A global climate
model might beautifully predict European weather patterns
while completely failing to capture how the Andes' steep
elevation gradients create radically different weather systems
within kilometers [30]. This spatial-scale variability has long
been the bane of traditional modeling approaches. Incremental
transfer learning methods in [31] are making strides here by
allowing models to adapt general atmospheric knowledge to
local conditions - imagine teaching someone to recognize
weather patterns first in your home region, then helping them
adjust that knowledge when they move somewhere with
completely different topography.

The temporal dimension adds yet another layer of
complexity. Weather systems operate on timescales ranging
from minutes (tornado formation) to decades (EI Nifio cycles),
and a good forecasting system needs to handle all of them
simultaneously. Traditional approaches often struggle with
these nested periodicities, like trying to track both the rhythm
and melody of a complex piece of music with just one
instrument [32]. Incremental methods employing online
Fourier analysis can adaptively focus on the relevant
timescales as conditions change - paying attention to seasonal
patterns during monsoon forecasts while remaining sensitive
to developing short-term extremes.

What's emerging from these challenges is a new paradigm
in weather modeling - one that treats prediction systems not as
static repositories of knowledge, but as living, learning entities
that evolve alongside the weather they're trying to understand.
As observed in literature of operational forecasting systems,
the most successful prediction frameworks aren't those with
the most sophisticated initial training, but those that have
learned how to learn from their mistakes in the field. This
philosophical shift - from seeing models as finished products
to viewing them as adaptable tools - may hold the key to

building weather forecasting systems that can keep pace with
our rapidly changing world.

E. Common Weather Datasets for Incremental Learning:
Fuel for Adaptive Forecasting

Behind every successful incremental learning (IL) system
lies a robust dataset—one that can keep up with the real-time
demands of weather forecasting. But not all datasets are
created equal. Some shine for their high-frequency updates,
others for their regional granularity, and a few for their ability
to challenge IL models with messy, real-world imperfections.
Below in table 11, we explore the workhorse datasets that are
quietly powering the incremental learning revolution in
climate science, along with their unique strengths and quirks.

TABLE II. COMMON WEATHER DATASETS FOR IL
Dataset Scope Suitability
Doppler High-resolution Ideal for real-time storm
Radar precipitation and wind | tracking and nowcasting
Feeds velocity data updated | using online IL models
[33] every 5-10 minutes
Local AWS | Station-level Supports hyper-local IL-
[34] temperature, humidity, | based forecasts; useful for
wind, and  pressure | adapting models to
observations at 1-15 min | microclimates
intervals
IMD India-specific ~ weather | Regional IL for monsoon
[35] obs. prediction
ECMWF Global  medium-range | IL models can blend NWP
[36] forecasts (up to 15 days) | outputs with live
updated every 6 hours observations to improve
short-term forecast
accuracy
GFS Global forecasts up to 16 | Enables hybrid IL systems
[37] days, updated every 6 | combining physics-based
hours predictions with adaptive
learning from recent errors

IV. INCREMENTAL LEARNING APPROACHES IN WEATHER
FORECASTING

A. Incremental Traditional Machine Learning Approaches

Traditional machine learning methods [38-42] are
demonstrating remarkable resilience when adapted for
incremental weather forecasting. These time-tested classic
algorithms like SVMs and decision trees, are proving their
worth when retooled for real-time adaptation.

B. Incremental Deep Learning Approaches

The field of weather forecasting is witnessing a quiet
revolution as deep learning models shed their static nature and
embrace continuous learning. Unlike traditional approaches
that treat training as a one-time event, these adaptive neural
networks evolve alongside the weather systems they monitor.
Online LSTM model in [43] demonstrated how sequential
processing of National Hurricane Center data could reduce
intensity prediction errors by 15% compared to static models
- a margin that often means the difference between adequate
preparation and devastating consequences for coastal
communities. Meanwhile, Salvador et al.'s in [44] work with
evolving spiking neural networks revealed an unexpected
benefit: their heatwave prediction system matched RNNs in
accuracy while slashing energy consumption by 30%, making
continuous operation feasible even on resource-constrained
field devices. Perhaps most pragmatically, authors in [45]
showed how strategic partial retraining of RNNs using sliding
windows could maintain prediction quality for seasonal
rainfall anomalies while reducing computational overhead by
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60% - proving that sometimes the smartest adaptation isn't
building a better model, but building a model that knows when
and how to update itself. These innovations share a common
thread: they treat weather forecasting not as a series of discrete
predictions, but as an ongoing conversation between models
and an ever-changing planet.

C. Transfer & Lifelong Learning

The true test of any forecasting system isn't just what it
knows—but how well it applies that knowledge to new
challenges. Transfer and lifelong learning approaches are
redefining Climate Al by enabling models to accumulate
wisdom like veteran meteorologists, adapting past lessons to
new regions and evolving conditions. Consider Singh et al.'s
in [46] breakthrough in monsoon prediction: by transferring
patterns learned from European ERA5 data to Indian IMD
observations, their model achieved 18% greater accuracy than
approaches trained solely on regional data—demonstrating
how atmospheric behaviors in one hemisphere could
illuminate patterns in another, much like how seasoned
forecasters spot familiar signatures in unfamiliar contexts.

Even more impressive is how these systems retain
knowledge over time. The CLIMATE-LL framework [47]
tackles one of incremental learning's toughest challenges—
catastrophic forgetting—reducing knowledge loss to under
5% across a decade of shifting climate data. This mirrors how
human experts maintain core principles while adapting to new
trends, ensuring that lessons from past droughts or heatwaves
aren't erased by newer observations. These advances suggest
we're moving toward climate models that don't just predict—
they learn and remember, building institutional knowledge
with each passing season.

D. Hybrid and Ensemble Methods

Hybrid and ensemble methods are proving particularly
adept at handling weather data's messy reality, where sensor
noise, shifting baselines, and complex interactions demand
both flexibility and robustness. These approaches
acknowledge what seasoned forecasters have long known: no
single model can capture Earth's atmospheric intricacies, but
the right combination might come close. Table Ill shows
hybrid and ensemble methods that combine the strengths of
multiple approaches to address key challenges in weather
forecasting. The table highlights techniques like Online
Bagging for handling noisy sensor data, Rule-Based IL for
interpretable ENSO phase analysis, and Switching Ensembles
that automatically adapt to concept drift in flood prediction.
These methods demonstrate how combining different learning
paradigms can produce more robust and adaptive weather
models than any single approach alone.

TABLE III. SUMMARY OF RELATED WORK

Weather Use

Technique Case

Advantage

Handles non-stationary

EnsPKDE&IncLKDE - - RN
time series effectively;

(Ensemble + Incremental

General climate
time-series

Learning + KDE) Isuppqrts continual forecasting [48]
earning

IDT-eDL  (Incremental— Adapts to  incoming

Decremental data efficiently: robust Temperature

Transformation + Y, prediction [49]

Ensemble DL) to concept drift

Combines physical | ENSO (El
Hybrid ENSO | model insight with ML | Nifio-Southern
Forecasting (FIO-CPS + | precision; reduces | Oscillation)
XGBoost) errors in  complex | event

predictions forecasting [50]

V. EVALUATION METRICS AND BENCHMARKS

Assessing incremental learning systems requires more
than standard metrics—it demands tracking how models
evolve with shifting weather patterns. While measures like
RMSE provide performance snapshots, specialized metrics
evaluate memory efficiency, resilience to concept drift, and
knowledge transfer across shifting weather conditions.
Consider that a model might achieve stellar accuracy today yet
catastrophically forget yesterday's patterns tomorrow—a risk
quantified by stability-plasticity metrics but invisible to
conventional benchmarks. Tools like Climate-ILBench now
tag datasets for drift severity, recognizing that climate Al must
be judged by how it learns, not just what it knows. IL-specific
metrics are given in table V.

TABLE IV. IL-SPECIFIC METRICS
. Ideal
Metric Purpose Value
. GPU/RAM usage per update (e.g., <100
Memory Footprint MB/hr) Lower
Training/ Latency per data chunk (e.g., <50 ms for
. . Lower
Inference Time satellite streams)

—_— . Average accuracy drop after concept
Stability-Plasticity drift (e.q., <5%) Lower
Forward Transfer | Knowledge reuse for new tasks (e.g., FT Higher
(FT) >0.7) g

V1. CONCLUSION

Choosing the right machine learning approach for weather
forecasting isn’t just about accuracy—it’s about balancing
real-world constraints like computational budgets, data
availability, and the urgent need for timely predictions. Below,
we dissect how incremental learning stacks up against
traditional batch methods, not in abstract terms, but through
the lens of actual operational challenges faced by
meteorologists and weather scientists. As our weather
becomes more unpredictable, our forecasting tools must
evolve from static snapshots to dynamic, learning systems.
Incremental learning isn’t just another machine learning
technique—it represents a fundamental shift in how we
approach weather modeling, moving from periodic updates to
continuous adaptation. But as this review has shown, its real
value lies not in replacing traditional methods, but in
complementing them while addressing their most critical
limitations. This review has mapped both the promise and
growing pains of incremental learning in weather forecasting.
The path forward demands collaboration across computer
science, weather science, and the communities most affected
by our changing world.
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