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Abstract— Weather change has intensified extreme events, 

increasing risks to agriculture, public health, and disaster 

management. Conventional forecasting models face challenges 

from exponential data growth, non-stationary weather patterns 

(concept drift), and the need for real-time adaptability. 

Incremental Learning (IL)—a class of algorithms that 

continuously update models with streaming data without full 

retraining—offers adaptive, scalable, and drift-resilient 

forecasting capabilities. This study investigates the role of IL in 

advancing weather forecasting, examining methodologies, real-

world applications, domain-specific challenges, and evaluation 

strategies. It reviews techniques including online ensemble 

models, continuous deep learning frameworks, and hybrid 

adaptive systems capable of learning from evolving weather 

data streams. The study discusses applications in temperature 

and rainfall forecasting, as well as extreme weather event 

detection. Key challenges include high spatiotemporal 

variability and incomplete or noisy satellite observations. The 

study concludes that IL is pivotal for next-generation adaptive 

weather forecasting and supports timely, reliable decision-

making in dynamic weather conditions.  
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I. INTRODUCTION 

Weather forecasting plays a crucial role in agriculture, 
health, and disaster management by providing essential 
information that aids decision-making and risk mitigation. 
Accurate weather predictions enable stakeholders to prepare 
for adverse conditions, optimize resource use, and enhance 
resilience against weather variability. Seasonal weather 
forecasts help farmers tailor practices to anticipated weather, 
reducing risks during adverse seasons and maximizing 
benefits in favorable ones [1]. Forecasts provide information 
and guidance for decisions about crop selection, pest 
management, and resource use, improving productivity and 
sustainability. Timely forecasts can result in increased 
profitability and decreased losses for farmers, helping them 
and their marketing systems deter the downward spiral of low 
profitability and extinction of farming; as well as provide 
some assurance for downstream users of farm outputs, 
especially if they are reliant on the farm to provide stable 
output [2]. About public health, weather forecasts can 
sometimes identify conditions favorable for the spread of 
disease to allow relevant interventions to occur quickly in 
public health terms. In short, weather forecasts enhance food 
security through stabilizing agricultural production for public 
health [3]. The social relevance and value of accurate weather 
forecasts is well illustrated when considering extreme weather 
events, where forecasts can promote preparedness, regarding 
the strategic allocation of resources and strategies for effective 

responses. Engaging with communities for advocacy and 
understanding of weather forecast information can help 
develop resilience in the context of damages from weather 
disasters, as well as adaptive capacity for future weather 
change impacts [4].  

Traditional forecasting models are strained under big data, 
concept drift, and real time adaptation. These issues arise due 
to the nature of data streams. For example, within the smart 
city environment, data streams and online data are generated 
continuously in some instances. Rapid technology adoption of 
the Internet of Things (IoT) and the subsequent data 
generation, along with the sustained, consistent, and dramatic 
increase of data development, have resulted in a high-volume 
stream of data to be processed quickly. Traditional models are 
further strained with data memory and processing time 
constraints and can hinder real-time analyses of larger datasets 
[5].  

Concept drift refers to the changing statistical properties 
of the data over time, usually resulting in declining model 
performance. Many traditional models learn based on data that 
is restricted to what the practitioners trained the model on. 
Existing models only react to concept drift slowly or 
inaccurately, producing unreliable, old predictions. Types of 
model adaptation, such as proactive model adaptation and 
drift detection, provide accurate modeling capabilities in 
changing data distributions [6]. Real-time adaptability is 
critical for good forecasting, especially with forecasting 
within non-stationary environments. Data augmentations, 
filtering, transfer learning strategies, or adaptive filtering 
could improve models' robustness against concept drift and 
allow practitioners to learn with data quicker over time [7]. 
However, to achieve this adaptability, sophisticated feature 
selection and model adjustment techniques are required to 
ensure performance is not compromised [8]. 

Despite these challenges, however, there are pathways 
forward to create stronger forecasting models that can 
implement new modelling techniques with a better chance of 
adapting to dynamic scenarios and improving accuracy. 

Incremental learning is an effective method for improving 
weather change forecasting because it allows models to 
gradually incorporate new data without the need to re-train. 
Incremental learning can be particularly useful for 
meteorological applications because the amount of data is not 
a concern when modelling, but the timing of accurate 
predictions is often crucial given the continuous training of the 
models. It also reduces the computational cost incurred from 
training models from scratch and is beneficial when space is a 
constraint. For example, while the Channel-Adapted MoE 
model optimizes its incremental updates by utilizing 15% of 
the trainable parameters, it achieves similar performance as 
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state-of-the-art models [9]. This is especially pertinent for 
scenarios with time-sensitive decision making in the context 
of weather change, such as flood forecasting requiring rapid 
response, compared to others that may have weeks to act and 
decision-to-collection times are not as critical. Incremental 
learning allows for new data to be poured into the model as it 
comes in based on a normal flow of incoming meteorological 
data. Liu et al. propose a novel two-phase approach to 
modeling that distinguishes newly minted short-term 
meteorological data from non-actionable long-term data, 
enhancing model performance through asynchronous updates. 
Models' ability to develop accurate predictions when acting as 
predictive models based on collected or observed data, will 
depend on the consistency of available data and how adaptable 
those models are as weather evolve [10]. 

Incremental learning strategies, including core-set 
selection strategies, reduce the severity of issues like 
catastrophic forgetting, allowing the model to access 
previously learned information while incorporating new data 
[11]. 

II. INCREMENTAL LEARNING 

Incremental learning is the ability to learn from streaming 
data that arrives over time, while often working within limited 
memory resources and not giving up model accuracy. 
Incremental learning is most relevant to the context where the 
environment is dynamic and the characteristics of the data 
might be subject to change, and is constantly evolving. 
Incremental learning can take various forms, including online 
learning, continual learning, and lifelong learning, each with 
its own challenges and applications 

A. Types Of Incremental Learning 

1) Task-Incremental Learning: This type of learning 

allows the model to learn individual tasks sequentially in 

order to maintain knowledge of prior tasks. This form of 

learning imposes additional constraints as the model has to 

inherently distinguish between tasks while also managing 

task-specific information and instructions [12]. 

2) Domain-Incremental Learning: This form of learning 

involves the model learning data that is in a different domain 

but relevant to the same task. The challenge is to learn the 

shifting domains while not forgetting prior learned data and 

knowledge [12]. 

3) Class-Incremental Learning: This learning type is 

about learning new classes of data while still maintaining 

performance for previously learned classes. Class-

incremental learning can have applications in domain 

adaptation. An example of a good example of class-

incremental learning is human activity recognition data, 

where the types of activities will likely evolve over time as 

new activities develop [13]. 

B. Key characteristics 

1) Memory Constraints: Incremental learning approaches 

are inherently memory-constrained, as they deal with data in 

an efficient way [14]. 

2) Adaptability: It is also relevant if they are able to adapt 

to changes in information and/or changes in new 

environments. Adaptive capacity is paramount in the setting 

of concept drift, where the underlying distribution of the data 

moves over time [15]. 

3) Scalability: That is, they efficiently scale as data 

volume increases, and offer continued performance without 

having to retrain everything [16]. 

4) Concept Drift: Approaches to combat concept drift 

include ensemble approaches or knowledge transfer 

approaches [17]. 

 

III. WEATHER FORECASTING: PROBLEM TYPES AND DATA 

CHALLENGES 

Weather forecasting encompasses various problems, 
including temperature prediction, rainfall forecasting, and the 
prediction of extreme events like heat waves and floods. These 
forecasting challenges are addressed through advanced 
methodologies that integrate data-driven approaches with 
traditional meteorological techniques, enhancing the accuracy 
and reliability of predictions.. 

A. Temperature Prediction 

Temperature forecasting employs Numerical Weather 
Prediction (NWP) models and machine learning methods to 
improve accuracy. Hybrid systems combine statistical 
methods with dynamical models, allowing for better 
integration of diverse data sources and reducing biases in 
predictions [18], [19]. 

B. Rainfall Forecasting 

Rainfall predictions are critical for hydrological 
applications, particularly in flood forecasting and water 
resource management. Short-range forecasts are essential for 
immediate decision-making, while seasonal forecasts assist in 
agricultural planning [19], [20]. 

C. Extreme Event Prediction 

Early-warning systems leverage machine learning to 
predict extreme weather conditions, enhancing the ability to 
forecast heatwaves and floods. Advanced models like 
FourCastNet and downscaling techniques provide high-
resolution forecasts, crucial for local impact assessments [21], 
[22]. Table I shows different types of weather forecasting 
problems. 

Conversely, while advancements in forecasting techniques 
have improved prediction accuracy, challenges remain, 
particularly in addressing uncertainties inherent in weather 
models and the need for real-time data assimilation to enhance 
operational forecasting systems. 

TABLE I.   TYPES OF WEATHER FORECASTING PROBLEM 

Problem 

Type 
Description IL Application Example 

Temperature 

Prediction 

Short-term (hourly/daily) 

to long-term (seasonal) 

forecasts 

Online ARIMA for real-

time heat risk alerts [23] 

Heatwave 

Prediction 

Forecasting prolonged 

high-temperature events 

Adaptive ensembles for 

early warnings [24] 

Flood 

Prediction 

Modeling river 

discharge/coastal 

inundation 

Streaming Bayesian 

networks [25] 

 

D. Critical Data Challenges In Weather Forecasting: How 
Incremental Learning Adapts 

Weather forecasting models are fighting an uphill battle 
against data that refuses to behave. As the planet warms, we're 
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not just seeing gradual temperature increases - we're 
witnessing fundamental shifts in weather patterns that break 
the rules our models were trained on. Storm tracks are 
migrating poleward, precipitation patterns are becoming more 
erratic, and extreme events are intensifying in ways that defy 
historical precedents [26]. This phenomenon, known as 
concept drift, is particularly insidious because it happens 
gradually - a model that predicted hurricane paths perfectly 
last year might be dangerously inaccurate this season. 
Incremental learning approaches like drift-aware online 
ensembles in [27] offer a solution by continuously monitoring 
prediction errors and adjusting model parameters in real-time, 
much like how experienced forecasters instinctively notice 
when their intuition needs updating based on recent weather 
anomalies. 

The data quality issues plaguing weather forecasting 
would keep any scientist awake at night. In developing nations 
where weather stations are sparse and maintenance is 
challenging, it's not uncommon for 30-40% of sensor data to 
be missing or corrupted during critical weather events [28]. 
Satellite data, while comprehensive, comes with its own 
headaches - cloud cover can obscure key atmospheric 
measurements, and retrieval algorithms sometimes introduce 
artifacts that look like real climate signals. Incremental matrix 
factorization techniques in [29] help overcome these 
challenges by building robust representations that can 
gracefully handle missing data points, similar to how veteran 
meteorologists learn to mentally reconstruct incomplete 
weather maps based on surrounding observations. 

Perhaps the most humbling challenge comes from Earth's 
breathtaking diversity of microclimates. A global climate 
model might beautifully predict European weather patterns 
while completely failing to capture how the Andes' steep 
elevation gradients create radically different weather systems 
within kilometers [30]. This spatial-scale variability has long 
been the bane of traditional modeling approaches. Incremental 
transfer learning methods in [31] are making strides here by 
allowing models to adapt general atmospheric knowledge to 
local conditions - imagine teaching someone to recognize 
weather patterns first in your home region, then helping them 
adjust that knowledge when they move somewhere with 
completely different topography. 

The temporal dimension adds yet another layer of 
complexity. Weather systems operate on timescales ranging 
from minutes (tornado formation) to decades (El Niño cycles), 
and a good forecasting system needs to handle all of them 
simultaneously. Traditional approaches often struggle with 
these nested periodicities, like trying to track both the rhythm 
and melody of a complex piece of music with just one 
instrument [32]. Incremental methods employing online 
Fourier analysis can adaptively focus on the relevant 
timescales as conditions change - paying attention to seasonal 
patterns during monsoon forecasts while remaining sensitive 
to developing short-term extremes. 

What's emerging from these challenges is a new paradigm 
in weather modeling - one that treats prediction systems not as 
static repositories of knowledge, but as living, learning entities 
that evolve alongside the weather they're trying to understand. 
As observed in literature of operational forecasting systems, 
the most successful prediction frameworks aren't those with 
the most sophisticated initial training, but those that have 
learned how to learn from their mistakes in the field. This 
philosophical shift - from seeing models as finished products 
to viewing them as adaptable tools - may hold the key to 

building weather forecasting systems that can keep pace with 
our rapidly changing world. 

E. Common Weather Datasets for Incremental Learning: 
Fuel for Adaptive Forecasting 

Behind every successful incremental learning (IL) system 
lies a robust dataset—one that can keep up with the real-time 
demands of weather forecasting. But not all datasets are 
created equal. Some shine for their high-frequency updates, 
others for their regional granularity, and a few for their ability 
to challenge IL models with messy, real-world imperfections. 
Below in table II, we explore the workhorse datasets that are 
quietly powering the incremental learning revolution in 
climate science, along with their unique strengths and quirks. 

TABLE II.   COMMON WEATHER DATASETS FOR IL 

Dataset Scope Suitability 

Doppler 

Radar 

Feeds 

[33]  

High-resolution 

precipitation and wind 

velocity data updated 

every 5–10 minutes 

Ideal for real-time storm 

tracking and nowcasting 

using online IL models 

Local AWS 

[34]  

Station-level 

temperature, humidity, 

wind, and pressure 

observations at 1–15 min 

intervals 

Supports hyper-local IL-

based forecasts; useful for 

adapting models to 

microclimates 

IMD 

[35] 

India-specific weather 

obs. 

Regional IL for monsoon 

prediction 

ECMWF  

[36] 

Global medium-range 

forecasts (up to 15 days) 

updated every 6 hours 

IL models can blend NWP 

outputs with live 

observations to improve 

short-term forecast 

accuracy 

GFS 

[37]  

Global forecasts up to 16 

days, updated every 6 

hours 

Enables hybrid IL systems 

combining physics-based 

predictions with adaptive 

learning from recent errors 

 

IV. INCREMENTAL LEARNING APPROACHES IN WEATHER 

FORECASTING 

A. Incremental Traditional Machine Learning Approaches 

Traditional machine learning methods [38-42] are 
demonstrating remarkable resilience when adapted for 
incremental weather forecasting. These time-tested classic 
algorithms like SVMs and decision trees, are proving their 
worth when retooled for real-time adaptation.  

B. Incremental Deep Learning Approaches 

The field of weather forecasting is witnessing a quiet 
revolution as deep learning models shed their static nature and 
embrace continuous learning. Unlike traditional approaches 
that treat training as a one-time event, these adaptive neural 
networks evolve alongside the weather systems they monitor. 
Online LSTM model in [43] demonstrated how sequential 
processing of National Hurricane Center data could reduce 
intensity prediction errors by 15% compared to static models 
- a margin that often means the difference between adequate 
preparation and devastating consequences for coastal 
communities. Meanwhile, Salvador et al.'s in [44] work with 
evolving spiking neural networks revealed an unexpected 
benefit: their heatwave prediction system matched RNNs in 
accuracy while slashing energy consumption by 30%, making 
continuous operation feasible even on resource-constrained 
field devices. Perhaps most pragmatically, authors in [45] 
showed how strategic partial retraining of RNNs using sliding 
windows could maintain prediction quality for seasonal 
rainfall anomalies while reducing computational overhead by 
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60% - proving that sometimes the smartest adaptation isn't 
building a better model, but building a model that knows when 
and how to update itself. These innovations share a common 
thread: they treat weather forecasting not as a series of discrete 
predictions, but as an ongoing conversation between models 
and an ever-changing planet. 

C. Transfer & Lifelong Learning 

The true test of any forecasting system isn't just what it 
knows—but how well it applies that knowledge to new 
challenges. Transfer and lifelong learning approaches are 
redefining Climate AI by enabling models to accumulate 
wisdom like veteran meteorologists, adapting past lessons to 
new regions and evolving conditions. Consider Singh et al.'s 
in [46] breakthrough in monsoon prediction: by transferring 
patterns learned from European ERA5 data to Indian IMD 
observations, their model achieved 18% greater accuracy than 
approaches trained solely on regional data—demonstrating 
how atmospheric behaviors in one hemisphere could 
illuminate patterns in another, much like how seasoned 
forecasters spot familiar signatures in unfamiliar contexts. 

Even more impressive is how these systems retain 
knowledge over time. The CLIMATE-LL framework [47] 
tackles one of incremental learning's toughest challenges—
catastrophic forgetting—reducing knowledge loss to under 
5% across a decade of shifting climate data. This mirrors how 
human experts maintain core principles while adapting to new 
trends, ensuring that lessons from past droughts or heatwaves 
aren't erased by newer observations. These advances suggest 
we're moving toward climate models that don't just predict—
they learn and remember, building institutional knowledge 
with each passing season. 

D. Hybrid and Ensemble Methods 

Hybrid and ensemble methods are proving particularly 
adept at handling weather data's messy reality, where sensor 
noise, shifting baselines, and complex interactions demand 
both flexibility and robustness. These approaches 
acknowledge what seasoned forecasters have long known: no 
single model can capture Earth's atmospheric intricacies, but 
the right combination might come close. Table III shows 
hybrid and ensemble methods that combine the strengths of 
multiple approaches to address key challenges in weather 
forecasting. The table highlights techniques like Online 
Bagging for handling noisy sensor data, Rule-Based IL for 
interpretable ENSO phase analysis, and Switching Ensembles 
that automatically adapt to concept drift in flood prediction. 
These methods demonstrate how combining different learning 
paradigms can produce more robust and adaptive weather 
models than any single approach alone. 

TABLE III.  SUMMARY OF RELATED WORK 

Technique Advantage 
Weather Use 

Case 

EnsPKDE&IncLKDE 

(Ensemble + Incremental 

Learning +  KDE) 

Handles non-stationary 

time series effectively; 

supports continual 

learning 

General climate 

time-series 

forecasting [48] 

IDT-eDL (Incremental– 

Decremental 

Transformation + 

Ensemble DL) 

Adapts to incoming 

data efficiently; robust 

to concept drift 

Temperature 

prediction [49] 

Hybrid ENSO 

Forecasting (FIO-CPS + 

XGBoost) 

Combines physical 

model insight with ML 

precision; reduces 

errors in complex 

predictions 

ENSO (El 

Niño–Southern 

Oscillation) 

event 

forecasting [50] 

V. EVALUATION METRICS AND BENCHMARKS 

Assessing incremental learning systems requires more 
than standard metrics—it demands tracking how models 
evolve with shifting weather patterns. While measures like 
RMSE provide performance snapshots, specialized metrics 
evaluate memory efficiency, resilience to concept drift, and 
knowledge transfer across shifting weather conditions. 
Consider that a model might achieve stellar accuracy today yet 
catastrophically forget yesterday's patterns tomorrow—a risk 
quantified by stability-plasticity metrics but invisible to 
conventional benchmarks. Tools like Climate-ILBench now 
tag datasets for drift severity, recognizing that climate AI must 
be judged by how it learns, not just what it knows. IL-specific 
metrics are given in table IV. 

TABLE IV.   IL-SPECIFIC METRICS 

Metric Purpose 
Ideal 
Value 

Memory Footprint 
 GPU/RAM usage per update (e.g., <100 

MB/hr) 
Lower 

Training/ 

Inference Time 

Latency per data chunk (e.g., <50 ms for 

satellite streams) 
Lower 

Stability-Plasticity 
Average accuracy drop after concept 

drift (e.g., <5%) 
Lower 

Forward Transfer 

(FT) 

Knowledge reuse for new tasks (e.g., FT 

> 0.7) 
Higher 

 

VI. CONCLUSION 

Choosing the right machine learning approach for weather 
forecasting isn’t just about accuracy—it’s about balancing 
real-world constraints like computational budgets, data 
availability, and the urgent need for timely predictions. Below, 
we dissect how incremental learning stacks up against 
traditional batch methods, not in abstract terms, but through 
the lens of actual operational challenges faced by 
meteorologists and weather scientists. As our weather 
becomes more unpredictable, our forecasting tools must 
evolve from static snapshots to dynamic, learning systems. 
Incremental learning isn’t just another machine learning 
technique—it represents a fundamental shift in how we 
approach weather modeling, moving from periodic updates to 
continuous adaptation. But as this review has shown, its real 
value lies not in replacing traditional methods, but in 
complementing them while addressing their most critical 
limitations. This review has mapped both the promise and 
growing pains of incremental learning in weather forecasting. 
The path forward demands collaboration across computer 
science, weather science, and the communities most affected 
by our changing world. 
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